310 | 7 | 13 |
下载次数 | 被引频次 | 阅读次数 |
铅(Pb)与镉(Cd)是土壤中常见的有害重金属污染物,其中Cd是毒性最强、污染最为严重的重金属元素之一,在自然界往往与Pb伴随出现。Pb与Cd极易蓄积于土壤,难以彻底清除,并可沿食物链“生物放大”引起健康危害。为评估不同种质藜蒿资源修复Pb与Cd污染土壤的潜力,以江汉大学汉南基地种植的78个藜蒿种质资源为材料,通过石墨消解-石墨炉原子吸收光度法来消解,检测其茎叶和根部中重金属Pb与Cd的含量,并加以对比与分析,筛选黎蒿重金属超富集种质和不富集种质,以期通过植物修复技术降低土壤中Pb与Cd污染。研究结果显示:15号种质的根部中重金属Pb与Cd含量均最高,分别达到了0.508、0.293 mg/kg;而6、7、9、67、75号等5个种质茎叶和根部中Pb含量均≤0.02,其含量仅为蔬菜食用标准的1/10。生物富集系数(biological concentration factor,BCF)与转移系数(biological transfer factor,BTF)的评价结果表明:15号种质根部中Pb与Cd的BCF分别达到了0.047、1.067,说明该种质Pb与Cd的富集能力最强;而28号种质茎叶对Pb与Cd的转移能力最强,其BTF分别为4.43与5.31。因此,15号种质的根部与28号种质的茎叶对重金属Pb有一定的富集能力,但对Cd有很强的富集作用,可尝试用于修复重金属Cd污染的研究。
Abstract:Lead(Pb) and cadmium(Cd) are common harmful heavy metal pollutants in soil. Cd is one of the most toxic and polluted heavy metal elements,which often occurs with Pb in nature. Pb and Cd are easy to accumulate in the soil,difficult to remove completely,and can cause health hazards along the food chain ″bio-amplification″. To evaluate the potential of different germplasm of Artemisia selengensis on the restoration of Pb,Cd contaminated soil,this study took 78 germplasm resources of Artemisia selengensis in Jianghan University Hannan Planting Base for the material,through the graphite digestion-graphite furnace atomic absorption spectrophotometry to digestion,tested its heavy metal Pb and Cd contents on the above-ground and below-ground part,contrasted and analyzed. In order to reduce soil heavy metal pollution by phytoremediation technology,we screened the heavy metal super-enriched species and non-enriched species of Artemisia selengensis. The results showed that the contents of Pb and Cd in the below-ground part of No.15 germplasm were the highest,reaching 0. 508 and 0. 293 mg/kg,respectively. The contents of Pb in the aboveground and below-ground parts of No.6,No.7,No.9,No.67,and No.75 germplasm were all no greater than 0. 02,which was 1/10 of the edible standard of vegetables. The evaluating results of bio-concentration factor(BCF)and bio-transfer factor(BTF)showed that the BCF of Pb and Cd in the below-ground part of No. 15 germplasm reached 0. 047 and1. 067,respectively,which had the best enrichment ability for Pb and Cd. The aboveground part of No.28 germplasm had the strongest transfer ability to Pb and Cd,with BTF of 4. 43 and 5. 31,respectively. Therefore,the below-ground part of No. 15 germplasm and the above-ground part of No. 28 germplasm had some enrichment of Pb and strong enrichment of Cd,which could be tried to use for the remediation of heavy metal Cd pollution.
[1]CHEN R S,DE S A,YE C,et al.China's soil pollution:farms on the frontline[J].Science,2014,344(6185):691.
[2]ZULFIQAR U,FAROOQ M,HUSSAIN S,et al.Lead toxicity in plants:impacts and remediation[J].Journal of Environmental Management,2019,250:109557.
[3]HAIDER F U,CAI L Q,COULTER J A,et al.Cadmium toxicity in plants:impacts and remediation strategies[J].Ecotoxicology and Environmental Safety,2021,211:111887.
[4]LUCKEY T D,VENUGOPAL B.Metal toxicity in mammals[M].New York:Plenum Press,1977.
[5]MARCHAND C,LALLIER E,BALTZER F,et al.Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana[J].Marine Chemistry,2006,98(1):1-17.
[6]CUELLO S,RAMOS S,MADRID Y,et al.Differential protein expression of hepatic cells associated with MeHg exposure:deepening into the molecular mechanisms of toxicity[J].Analytical and Bioanalytical Chemistry,2012,404(2):315-324.
[7]LIN Y C,HSU S C,CHOU C C K,et al.Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals[J].Environmental Pollution,2016,208:284-293.
[8]邵啸.浅析土壤重金属污染的现状以及治理[J].资源节约与环保,2020(10):105-106.
[9]马永和,许瑞,王丽敏,等.植物修复重金属污染土壤研究进展[J].破产利用与保护,2021,41(4):12-22.
[10]WEI B,YANG L.A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China[J].Microchemical Journal,2010,94(2):99-107.
[11]CAI M,MCBRIDE M B,LI K.Bioaccessibility of Ba,Cu,Pb,and Zn in urban garden and orchard soils[J].Environmental Pollution,2016,208:145-152.
[12]HONG H,DAI M,LU H,et al.Risk assessment and driving factors for artificial topography on element heterogeneity:case study at Jiangsu,China[J].Environmental Pollution,2018,233:246-260.
[13]李娜.土壤重金属污染的植物修复技术研究现状[J].中国资源综合利用,2021,39(12):106-108.
[14]刘宏伟,聂西度.野生藜蒿中的微量元素的质谱分析[J].光谱学与光谱分析,2018,38(12):3923-3928.
[15]李双梅,柯卫东,黄新芳,等.蒌蒿的研究概况[J].长江蔬菜,2017(18):49-55.
[16]董萌,赵运林,雷存喜,等.南洞庭湖优势植物蒌蒿的重金属富集特征及其食用安全性[J].湖南城市学院学报(自然科学版),2008(4):44-48.
[17]宋鹏飞,曾雪真,倪才英,等.鄱阳湖入湖河口土壤重金属污染评价及藜蒿食用安全分析[J].江西农业大学学报,2015(2):369-375.
[18]祝云龙,孙小舟,胡亚辉.大通湖及东洞庭湖蒌蒿中重金属元素的含量特征[J].江苏农业科学,2014,42(2):248-250.
[19]王伟.藜蒿在湿地生境下吸收富集砷、硒和镉的研究[D].南昌:南昌大学,2014.
[20]李吉锋.超累积植物修复矿区土壤重金属污染研究进展[J].矿产保护与利用,2020,40(5):138-143.
[21]刘小文,齐成媚,欧阳灿斌,等.Pb、Cd及其复合污染对紫茎泽兰生长及吸收富集特征的影响[J].生态环境学报,2014,23(5):876-883.
[22]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
[23]国家卫生和计划生育委员会,国家食品药品监督管理总局.食品中污染物限量(行业标准第1号修改单):GB 2762-2017/XG1-2021[S].北京:中国标准出版社,2021.
[24]REZAPOUR S,ATASHPAZ B,MOGHADDAM S S,et al.Cadmium accumulation,translocation factor,and health risk potential in a wastewater-irrigated soil-wheat(Triticum aestivum L.)system[J].Chemosphere,2019,231:579-587.
[25]ZHU G,XIAO H,GUO Q,et al.Effects of cadmium stress on growth and amino acid metabolism in two compositae plants[J].Ecotoxicology and Environmental Safety,2018,158:300-308.
[26]CEBURNIS D,STEINNES E.Conifer needles as biomonitors of atmospheric heavy metal deposition:comparison with mosses and precipitation,role of the canopy[J].Atmospheric Environment,2000,34(25):4265-4271.
[27]章萍,曾宪哲,王亲媛,等.水分条件对藜蒿(Artemisia selengensis)富集湿地土壤重金属的影响[J].湖泊科学,2019,31(6):1592-1600.
[28]LONE M I,HE Z L,STOFFELLA P J,et al.Phytoremediation of heavy metal polluted soils and water:progresses and perspectives[J].Journal of Zhejiang University Science B,2008,9(3):210-220.
[29]ZHANG Z,GUO G L,WANG M,et al.Enhanced stabilization of Pb,Zn,and Cd in contaminated soils using oxalic acid-activated phosphate rocks[J].Environmental Science and Pollution Research International,2018,25(3):2861-2868.
[30]LUO J S,ZHANG Z H.Mechanisms of cadmium phytoremediation and detoxification in plants[J].The Crop Journal,2021,9(3):521-529.
[31]陈涵,庄玉婷,冯嘉仪,等.铅镉复合污染对台湾相思生长和元素吸收的影响[J].西南林业大学学报(自然科学),2022,42(1):76-82.
[32]王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报(自然科学版),2005,36(1):107-112,118.
[33]林琳,旦增卓嘎,吴玲玲.铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应[J].生态毒理学报,2022,17(2):337-348.
[34]HUANG Y F,CHEN G F,XIONG L M,et al.Current situation of heavy metal pollution in farmland soil and phytoremediation application[J].Asian Agricultural Research,2016,8(1):22-24.
[35]KHALID M,UR-RAHMAN S,HASSANI D,et al.Advances in fungal-assisted phytoremediation of heavy metals:a review[J].Pedosphere,2021,31(3):475-495.
[36]LEUNG H M,WANG Z W,YE Z H,et al.Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils:a review[J].Pedosphere,2013,23(5):549-563.
基本信息:
DOI:10.16389/j.cnki.cn42-1737/n.2023.03.002
中图分类号:X173;X53
引用信息:
[1]鲁金春子,雷子元,王宇航等.不同藜蒿种质对重金属铅、镉富集能力的比较分析[J].江汉大学学报(自然科学版),2023,51(03):19-28.DOI:10.16389/j.cnki.cn42-1737/n.2023.03.002.
基金信息:
湖北省重点研发计划资助项目(2022BBA0064,2021BBA097)