367 | 1 | 5 |
下载次数 | 被引频次 | 阅读次数 |
目前主流图像分割算法在分割边界上对特征相似而类别不同的像素鉴别能力不佳,从而影响了分割精度。设计了一种基于曼哈顿距离自注意力机制的U-Net3+图像分割算法,通过关注不同特征点之间信息表征的差异程度来对大范围上下文信息关系进行建模,增强算法对特征相似而类别不同的像素的鉴别能力和对全局关系的学习能力;再通过U-Net3+的全尺度跳跃连接结构将不同尺度的特征相融合,为算法提供更多尺度的上下文信息,使分割算法兼顾细节信息和全局关系。使用COVID-19 CT数据集对该算法进行实验测试,结果表明,引入基于曼哈顿距离自注意力机制后U-Net3+的Dice和IoU指标分别提升了2.79%和3.17%,对比使用多头自注意力机制的U-Net3+分别提升了1.06%和1.02%,证明了该算法的有效性和优越性。
Abstract:In response to the problem that the current mainstream image segmentation algorithms have poor discrimination ability of pixels with similar features but different categories on the segmentation boundary,which affects segmentation accuracy,this paper designed a U-Net3+ segmentation algorithm based on the Manhattan distance selfattention mechanism. Large-scale contextual information relationships were modeled by focusing on the degree of difference in information representation between different feature points,thereby the network′s ability was enhanced to distinguish pixels with similar features but different categories and learn global relationships. Then,different scale features are fused through the full-scale jump connection structure of U-Net3+,providing more scale contextual information for the network,making the segmentation network balance detailed information and global relationships,thereby improving the segmentation effect. Finally,this paper used the COVID-19 CT dataset to conduct experimental tests on the algorithm. The results showed that after the introduction of the Manhattan-distance-based self-attention mechanism,the Dice and IoU metrics of U-Net3+ were improved by 2. 79% and 3. 17%respectively,compared with the U-Net3+ using the multiple self-attention mechanism improved by 1. 06% and 1. 02%,Which proves the algorithm to be of certain effectiveness and superiority.
[1]朱贺.基于深度学习的图像语义分割算法的应用研究[J].电子元器件与信息技术,2022,6(2):196-198.
[2]管艺博.人工智能在计算机网络技术中的应用分析[J].新型工业化,2021,11(8):72-74,78.
[3] XIE J Y,PENG Y. The head and neck tumor segmentation using NNU-Net with spatia1 and channel′squeeze&excitation′b1ocks[M]∥Head and neck tumor segmentation. Cham:Springer,2021:28-36.
[4]钟思华,郭兴明,郑伊能.改进U-Net网络的肺结节分割方法[J].计算机工程与应用,2020,56(17):203-209.
[5]崔子良,句媛媛,刘冬冬,等.基于深度卷积神经网络的气液两相流图像分割方法[J].计算机应用,2023,43(S1):217-223.
[6] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[J]. Medical Image Computing and Computer-Assisted Intervention,2015,9351:234-241.
[7]梁礼明,盛校棋,郭凯,等.基于改进的U-Net眼底视网膜血管分割[J].计算机应用研究,2020,37(4):1247-1251.
[8]黄晓鸣,何富运,唐晓虎,等. U-Net及其变体在医学图像分割中的应用研究综述[J].中国生物医学工程学报,2022,41(5):567-576.
[9]周涛,董雅丽,霍兵强,等. U-Net网络医学图像分割应用综述[J].中国图象图形学报,2021,26(9):2058-2077.
[10]张欢,仇大伟,冯毅博,等. U-Net模型改进及其在医学图像分割上的研究综述[J].激光与光电子学进展,2022,59(2):1-17.
[11]张娜,张永寿,李翔,等.多尺度特征融合的轻量化膀胱癌MRI图像分割算法[J].陕西师范大学学报(自然科学版),2022,50(3):89-95.
[12]钟经纬. PRA-UNet3+:全尺度跳跃连接CT肝脏图像分割模型[J].软件导刊,2023,22(2):15-20.
[13]李擎,皇甫玉彬,李江昀,等. UConvTrans:全局和局部信息交互的双分支心脏图像分割[J].上海交通大学学报,2023,57(5):570-581.
[14]吉旭瑞,刘静,吉辉,等.改进全局上下文注意力新冠肺炎X光诊断方法[J].计算机工程与应用,2023,59(21):222-230.
[15] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al. U-Net++:A nested U-Net architecture for medical image segmentation[J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support. 2018,11045:3-11.
[16] XIA X,KULIS B. W-Net:A deep model for fully unsupervised image segmentation[J]. arXiv,2017.
[17] HUANG H,LIN L,TONG R,et al. U-Net 3+:A full-scale connected U-Net for medical image segmentation[J]. 2020 IEEE International Conference on Acoustics,Speech and Signal Processing,IEEE,2020:1055-1059.
[18]师文博,杨环,西永明,等.基于自注意力的双通路全脊柱X光图像分割模型[J].中国医学物理学杂志,2022,39(11):1385-1392.
[19]吴倩倩,周蕾蕾,陆小妍,等.基于多头自注意力机制与U-Net的增强CT图像肾脏小肿瘤自动分割研究[J].中国医学装备,2022,19(2):27-31.
[20]张淑军,彭中,李辉. SAU-Net:基于U-Net和自注意力机制的医学图像分割方法[J].电子学报,2022,50(10):2433-2442.
[21] COVID-19 CT segmentation dataset[EB/OL].(2020-04-11)[2020-09-13]. http:∥medicalsegmentation. com/covid19/.
[22] MA J,WANG Y,AN X,et al. Toward data efficient learning:a benchmark for COVID-19 CT lung and infection segmentation[J]. Medical Physics,2021,48(3):1197-1210.
[23]詹光莉,刘辉,杨路.基于改进注意力W-Net的工业烟尘图像分割[J].计算机集成制造系统,2023,29(2):628-637.
[24] GUO C,SZEMENYEI M,YI Y,et al. SA-UNet:spatial attention U-Net for retinal vessel segmentation[C]∥2020 25th International Conference on Pattern Recognition(ICPR). Milan,Italy,2021:1236-1242.
[25]任子晖,蔡蔓利,缪小波,等.基于全尺度跳跃连接的视网膜血管分割算法[J].科学技术与工程,2022,22(7):2776-2783.
基本信息:
DOI:10.16389/j.cnki.cn42-1737/n.2024.02.007
中图分类号:TP391.41
引用信息:
[1]张志玮,叶曦,杨志红.基于曼哈顿距离自注意力机制的U-Net3+图像分割[J].江汉大学学报(自然科学版),2024,52(02):56-67.DOI:10.16389/j.cnki.cn42-1737/n.2024.02.007.
基金信息:
江汉大学四新学科专项项目(2022SXZX32)