1,411 | 1 | 4 |
下载次数 | 被引频次 | 阅读次数 |
柯西不等式在酉不确定性的研究中有着重要应用,利用柯西不等式改进其本身并将其应用于酉不确定性的计算中。首先,运用以低维柯西不等式来优化高维柯西不等式的思想构造了第一个柯西不等式序列;然后,通过引入凸函数,得到了第二个柯西不等式序列;最后,将构造的柯西不等式序列应用于基于方差乘积的两个酉算子的不确定性实例研究中。结果表明,所构造的柯西不等式序列能有效地改进两个酉算子基于方差乘积的不确定性的界。
Abstract:Cauchy's inequality has an important application in the study of unitary uncertainty. The authors use Cauchy's inequality to improve itself and apply it to the calculation of unitary uncertainty. Firstly,the idea of using low-dimensional Cauchy's inequality to optimize high-dimensional Cauchy's inequality is used to obtain the first sequence of Cauchy's inequality. Then, by introducing a convex function, the second sequence of Cauchy's inequality is obtained. Finally,the obtained sequence of Cauchy's inequality is applied to study the variance-based quantum uncertainty. The results show that the Cauchy's inequality sequence constructed by us can effectively optimize the bounds of variance product-based uncertainty for two unitary operators.
[1]李娟,崔文泉. Cauchy—Schwarz不等式的推广[J].大学数学,2006,22(6):144-147.
[2] RAJENDRA B. A Cauchy—Schwarz inequality for operators with applications[J]. Linear Algebra and its Applications,1995,224:119-129.
[3]何振涛,刘俊同,王卿文.算子的柯西范数不等式的改进[J].应用数学与计算数学学报,2018,32(3):644-650.
[4] HIAI F,ZHAN X Z. Inequalities involving unitary invariant norms and operator monotone functions[J]. Linear Algebra and its Applications,2002,341(1):151-169.
[5] HEISENBERG W. Uber den anschaulichen inhalt der quantentheoretischen Kinematik und Mechanik[J].Zeitschrift Für Physik,1927,43(3):172-198.
[6] ROBERTSON H P. The uncertainty principle[J]. Physics Review,1929,34:163.
[7] YU B,JING N,LI X Q. Strong unitary uncertainty relations[J]. Physics Review,2019,85:022116.
[8] BONG K W,TISCHLER N,PATEL R B,et al. Strong unitary and overlap uncertainty relations:theory and experiment[J]. Physics Review Letters,2018,120:230402.
基本信息:
DOI:10.16389/j.cnki.cn42-1737/n.2021.06.003
中图分类号:O178
引用信息:
[1]胡晓莉,乔龙坤.柯西不等式的改进及其应用[J].江汉大学学报(自然科学版),2021,49(06):29-33.DOI:10.16389/j.cnki.cn42-1737/n.2021.06.003.
基金信息:
湖北省自然科学面上基金资助项目(2020CFB538)