88 | 1 | 2 |
下载次数 | 被引频次 | 阅读次数 |
针对Wang提出的一个新混沌系统,用主动控制和自适应控制两种方法对其同步问题进行研究.基于Lyapunov稳定性理论,得到了两种方法下两个恒同Wang系统在全局范围内同步的充分条件.数值仿真结果验证了两种控制方法的有效性.
Abstract:The chaos synchronization of a new 3D chaotic system is studies by active control and adaptive control.Based on Lyapunov stability theory,the sufficient conditions of synchronization between two identical Wang systems are obtained.The results of numerical simulation demonstrate the effectiveness of active control and adaptive control.
[1]Lorenz E N.Deterministic non-periodic flows[J].J AtmosSci,1963,20(2):130-148.
[2]Chen G,Ueta T.Yet another chaotic attractor[J].Int J Bi-furc Chaos,1999,9:1465-1466.
[3]LüJ,Chen G.A new chaotic attractor coined[J].Int J BifurcChaos,2002,12(3):659-661.
[4]刘杰,陈士华,陆君安.统一混沌系统的投影同步与控制[J].物理学报,2003,52(7)1:595-1599.
[5]Liu L,Su Y.A modified Lorenz system[J].Int J NonlinearSci,2006,7:187-191.
[6]Qi G,Chen G,Du S,et al.Analysis of a new chaotic system[J].Physica A,2005,352(2/3/4):295-308.
[7]Pecora L M,Carroll T L.Synchronization in chaotic sys-tems[J].Phys Rev Lett,1990,64:821-824.
[8]Wang L.3-scroll and 4-scroll chaotic attractors generatedfrom a new 3-D quadratic autonomous system[J].Nonlin-ear Dyn,2009,56:453-462.
[9]Duan Z,Chen G,Huang L.Disconnected synchronized re-gion of complex dynamical networks[J].IEEE Trans onAutomatic Control,2009,54(4):845-849.
[10]Wu Y.Chaos synchronization of a new 3D chaotic system[J].Chaos,Solitons and Fractals,2009,42:1812-1819.
[11]Lu J A,Huang B X,Wu X Q.Control of an unified chaoticsystem with delayed continuous periodic switch[J].Chaos,Solitons and Fractals,2004,22:229-236.
[12]LüJ,Yu X,Chen G.Chaos synchronization of generalcomplex dynamical networks[J].Physica A,2004,334(1/2):281-302.
[13]Chen S,Qing Y,Wang C.Impulsive control and synchron-ization of unified chaotic system[J].Chaos,Solitons andFractals,2004,20:751-758.
[14]Chen G,Dong X.From chaos to order:methodologies,per-spectives and applications[M].Singapore:World Scien-tific,1998.
[15]贾贞,陆君安,邓光明.超混沌Lü系统的非线性反馈自适应同步[J].系统工程与电子技术,2007,29(4):598-617.
[16]Khalil H K.Nonlinear systems[M].3rd ed.Upper SaddleRiver,NJ:Prentice Hall,2002.
基本信息:
DOI:
中图分类号:O415.5
引用信息:
[1]陈敏,周志明,王华.一个新的三维混沌系统的混沌同步[J].江汉大学学报(自然科学版),2010,38(04):14-16.
基金信息: